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Abstract 

Cosmological topological defects as well as some non-standard inflation models can give 
rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth 
moments that measure the deviation of a distribution from a Gaussian. Measurement of 
these moments for the cosmological density field and for the microwave background tem- 
perature anistropy can provide a test of the Gaussian nature of the primordial fluctuation 
spectrum. In the case of the density field, the importance of measuring the kurtosis is 
stressed since it will be perserved through the gravitational evolution. Current constraints 
on skewness and kurtosis of primeval perturbations are obtained from the observed density 
constrast CP on small scales and from recent COBE observations of temperature anistropies 
on large s&les. It is also shown how, in principle, future microwave anistropy experiments 
might he able to reveal the initial skewness and kurtosis. It is shown that present data ar 
gue that if the initial spectrum is adiaba.tic, then it is probably Gaussian, but non-Gaussian 
isocurvature fluctuations are still a,llowed and these are what topological defects provide. 
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1. Introduction 

The cosmic structure formation problem is in some sense an initial value problem: 

how did the universe generate the initial perturbations? In particular, one can divide 

initial condition models into two clear classes: Gaussian or non-Gaussian. Currently, the 

most popular model is the cold dark matter (CDM) model (Davis et al. 1985; Iiolh 

& Turner 1989) where the zero-point quantum flunctuations in the inflaton field generate 

Gaussian primeval density perturbation with roughly equal power on all scales (after matter 

domination, small density fluctuations grow linearly with the cosmological expansion until 

&PIP - 1.) However, recent observations, including the extra large scale power seen in 

the APM Z-point correlation (Efstathiou 1991) and possibly the clustering of clusters and 

superclusters up to 100 Mpc scale (Bahcall Sr Soniera 1983; Tully 1986), coherent structure 

at scales - 100 Mpc across, such as the Great wall (Geller & Huchra 1989), large voids 

(Iiirshner et al. 1987; Geller & Huchra 1989) and the large scale velocity flows (Dressler 

et al. 1986; Collins et al. 1986), seem to be in conflict with the spectral assumption of the 

CDM model. However, it is also noted that on angular scales beyond those where galaxy 

structure are well observed, the “CDM model” is consistent with the COBE anistropy 

results (Smoot et al. 1992). One key ingredient of the standard CDM scenario is tha,t the 

initial density field is Gaussian. However, on a~ngular scales of 1” to Y, the microwave 

anistropy limits are ahead? marginally in confilict, with Gaussian models for generating 

the velocity flows (Gorski et al. 1992). 

A non-Gaussian initial density perturbation will not only help to fit the galaxy observa- 

tions. hut also point to an a,lterna,te scenario for generating the initial perturbation am1 yet 

might still satisfy t,he COBE aniskopy measurements. In fact, the density field generated 

by some non-standard inflation scena.rios (Bardeen et al. 198i; Salopek et al. 1989; Silk 

& Turner 1986) and topological defects (Vilenkiu 1985: Turok 1989; Hill et al. 1969) can 

be characterized as non-Gaussian. Thus. the confirmation of a non-Gaussain densit,y field 

would require new physics that yield topologica,l defects or special non-standard inflation 

? 



in the early universe. Such a test of the Gaussian nature of the initial condition is, thus. 

very important, and timely in today’s cosmology. 

In this paper, we discuss two ways to do this test. One is from the statistics of the 

galaxy counts in a redshift survey. However, since the density field we observe today has 

already gone through the “black-box” of non-linear gravitational evolution one has to filter 

out this effect carefully to get a reliable estimate. Another is from the cosmic microwave 

background radiation (CMBR) anistropy experiments which measure the primeval density 

perturbations in baryons at redshift : N 1000. The density constrast is fairly small at 

this epoch. The Gaussian nature of the microwave background fluctuation reflects directly 

the nature of the primordial density. This approach is promising, especially after COBE 

reported the large scale temperature anistropy (Smoot et al. 1992) and data of a whole-sky 

map of the temperature anistropy are accumulating as are data on smaller scale anistropies 

(Experimental Papers 1992). 

This paper is organized as follows: In part 2, we discuss skewness and kurtosis for 

adiabatic and isocurvature initial density perturbations as well as note how fractal initial 

fluctuation patterns behave. We present prototype models as examples. In part 3, we 

present a real space analysis of gravitational evolution. which is relevent to the measure- 

ment of skewness and kurtosis through statistics of galaxy counts in a redshift survey. 

In part 4, a L,-spa,ce analysis is presented. which is the basis for constmining and mea- 

suring skewness and kurtosis through power spectrum and cosmic microwave background 

experiments. In part 5, we discuss how to measure initial skewness and kurtosis for adia- 

batic perturbations,through the third and fourth order temperature correlation functions 

in cosmic microwave background experiments. 

2. Skewness and Kurtosis 

What are skewness and kurtosis? W’ick’s theorem states that for a random Gaussian 
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variable 4 with zero mean, 

< $’ >= 0, < h,fJ(odd number) >= O; 

< 41-42 >= <(f”l - v); (2.1) 

and < @I&C&+% >=< $102 >< $344 > + < 4143 >< 4244 > + < $144 >< &+~a > 

The departure from a Gaussain behavior can be characterized by the appearance of the 

skewness S and kurtosis I( which are defined as the third and fourth moment of 4: 

s =< & >, Ii =< $4 > -3 < $2 >2 (2.2) 

In k-space, the skewness S and kurtosis Ii are defined through 

s =< 6k,6k26-k,-k2 >, kl, kz # 0; k, + k2 # 0. (2.3) 

I< =< 6k,6k26k36-k,.41-k3 >, kl, k21 k3 # 0; k, + kz + kz. # 0. 

We study non-Gaussian density perturbations in the following three models: 

(2.1) Quadratic model. 

(2.4) 

The density contrast 6 is the superposition of a linear and quadratic function of a 

Gaussian variable: 

6=4+a(r#J2-<d2>), (2.5) 

where 4 is a Gaussian. Motivated by Bardeen’s two-field inflation model (Fan 5: Bardeen 

1992), this model is ideal for studying primordial adiaba,tic non-Gaussian density pertur- 

bation. The distribution function P( 6) is found through P( 6)d6 = P( &)dd. or 

P(6) = 
1 1 

J4cxb + 1 $ 4cu’a2 
__ ~-~(d’4ab+i+4a2~2-11Z 

d%ic 

which is plotted in Fig. (1). In real space, 

(2.6) 

< 62 >=< ($2 > +zn’ < 6’ >‘, 

S = 60 < cj’ >’ +&IT” < 0’ >“. (2.7) 
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and Ii = 2&x2 < 0’ >3 +48d < 4’ >4 

The limiting case where (Y < 1 is an ideal model for studying an initially skewed spectrum. 

To the lowest order, 

< 62 >+i $2 >, 

S -+ 6a< 4’ >2, (223) 

and I< + 0. 

In k-space, by defining PO(k) =< 6k6-k >, the power spectrum, bispectrum (skewness) 

and the kurtosis are: 

P(k) = PO{ k) + ‘a* 
J 

Pc,(k’)Po(k - k’)@k’ -+ PO(k) 

S(hrb) = a(Po(k1)Po(k2)+Po(kl)Po(k, +kz)+Po(k,)Po(k, ch)) 

+8a3 
J 

P,,(k’)Po(k, - k’)Pa(k2 - k’)@k’ (2.9) 

+ 4Po(hMb) + Po(hU’o(kl + k2)+ Po(kz)Po(h + kz)) 

and K(kl, k,, k3) -+ 0. 

(9.2) 0(-V) non-linear a-model. 

When a O(N) globa, symmetry is broken to 0( N-1) by a N-component real scalar field 

o in the early universe. the dynamics of the scalar fields. which is well described by 0( .V) 

a-model, has very interesting cosmological consequences. This model has been investigated 

in det,a,il by Turok 22 Spergel (1991), and by Davis et al. (1992). It is a prototype model 

for producing non-Gaussian isocurvature density perturbations. In the standard cold dark 

matter dominated iuniverse, the induced peturbations in matter are given by 

6(r) = q J r)” d,&loOi, (2.10) 

L 
where 00~ = $&3;d. In the large FI limit, @ ana 8i4 are two independent Gaussian 

variables. Thus 6 is Gaussian in this limit. The deviation from a Gaussian can be calculated 

from a $ expansion. which 
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in real space is: 

s - (&) < h2 >3/2 

and IL’ - ($, < 62 >2; 

in k- space: 

P(k) - ; J ~Id~)I,!k - k’), 

S(k,, x-2) N $ J d3k’ I (k’)Io(k, - k’)Io(k* -k’) (2R)3O 

(2.11) 

and K(!q,k’,k3) - &r&k’ - k,&(k + kz)Io(k - k, - k3), 

where lo(k) =< &4-k ,. 

(2.3) A sample fractal model. 

This is an artificial model where 

(2.12) 

P(kl,k2 ,... .,k,, -kl -kg - -k,) = C,P(k,)P(k2)...P(k,) (2.13) 

where C, is a consta,nt. The reason we term it a “fractal model” is that, for a power 

law P(k), not only the two-point correlation function, but the n-point correlation function 

is invariant under scale transformation. Of course we know that physical mechanisms for 

generating fractal conditions are bounded by causality. Thus, fractals on scales larger than 

the horizon at the time of structure formation (Luo % Schramm, 1992) are not expected. 

3. Real Space Analysis 

It, is convenient to normalize the skewness and kurtosis by the variance. In this s&ion, 

we define the normalized skewness c1 and kurtosis 13 as: 

< $3 > 
C?= 4= 

< $4 > 

< $2 ,:1/z 1 <(P >’ 
-3 

In structure formation theory, the density contrast 6 is used as a random variable. For a, 

Gaussian initial perturbation, both 01 and /3 vanish, 
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The evolution of 6 in an expanding Einstein-de Sitter universe is (Peebles 1980): 

ii + 2zi = 47&p&l f 6) + V6.Vo/a2 + &+(v”u”)/a2, (3.2) 

where 
, I 

4 = -GpwZA(r); A(z) = J ; +-;; u” = -&ljA,, 

In the linear regime, 

6 = 60 X 6iD(t); (3.2) 

where D(t) = (t/ti)“s is the growing mode in the matter dominated universe, ti is ap- 

proximately the recombination time when the structure starts to grow, and Si is the initial 

density perturbation. The above equation shows that in the linear regime, spectrum fea- 

tures of the initial perturbation are all preserved. The non-linear effect can be found by 

expanding the density contrast to higher order: 

6 = 60(1 + E(I, t,); 60 -K 1; E < 1. (3.4) 

Then 
d li. 

~+‘2(0+a)~=4~GpbS~-Gpb 
6 
%A,,, + 

60 
lF~~~260a”ad(A,‘A,~), (3.5) 

which gives 

6 = 60 + ;6; - ;So,& + &,,,A,,, 

From this we can calculate the skewness developed from non-linear gravitational evolution 

effects (Peebles, 1980): 

34 
< 6” >= 7 < h,3 >*? or, (r = 74X$-C 

Notice t,hat the normalized skewness induced by the gravitational evolution scales as the 

square root of the vzwiance. However, as shown by Scherrer and Bertschinger (1991). 

the normalized skewness of the discrete-mass seeded model is constant. Several authors 

(Silk I!L Juszkiewicz 1991; Coles S: Frenk 1991) 1 rave used this argument to attempt to 

discriminate an initial Gaussian from a, non-Gaussmn perturbation. But one point can be 



lost in such an argument: the non-Gaussian initial perturbation also must undergo non- 

linear gravitat,ional evolution such that all of the initial skewness can be washed away. We 

can redo Peebles’s evolution calculation under the condition that the initial perturbation 

is non-Gaussian (Lahav et al 1992). For the topological defect seeded model, we consider 

the case where a and ,B are constant initially. 

< 6’ >=< 6,2 > +2 < ;sg3 - $6s,,~,, + ~A.e,A.~, > 

=<6,2>+<603>=<6; >(l+ad<6,2>); 

< b3 >=< 6,” > +3 < ;6; - &6;6s,,A,, + - ‘:A A 
56ns .o ,oo ’ 

=< 6; > +$ < 6; >= a < 6,’ >3i2 +(y + g, < 6,’ >? 

Thus, the overall skewness will be: 

< S3 > 
onon-Gaussian = < 62 >3/2 = 

o+(~+~jJT-gY 

(1 + aJm)sfs 

(3.3) 

(3.9) 

(3.10) 

The observed skewness vs. the initial skewness is plotted in Fig. 2, assuming the density 

contra,st 9 = dz = J;; = 0.5, where o is the standard variance of 6s. The maximum 

deviation from a Gaussian is < 20%. which is hard to discriminate using present galxq 

count, statistics a,nalysis (although future surveys such a,s the 10s redshift digital sky survey 

may improve this possibility). 

However. the kurtosis of an evolved Gaussian distribution rema,ins zero even to second 

order perturbation theory. This is shown below: 

< 9 >=< 6; > Jr4 < S,‘E > 

=< 6,4 > +4 < ;6: - -&&,*,, + 
63 

LA.&A 
569 ,“# > 

According to Eq. (l), a,11 the odd moments of a Gaussian variable vanish. so 

< 26’ - 16% 7 0 4n 0 0,o A,, + 

(3.11) 

(3.12) 



which gives: 

/9= 
< 64 > 

-3= 
< s,4 > 

< 62 >2 9 
-3=o. (3.13) 

Although full non-linear numerical analysis (Dekel Sr Yahil 1992) can generate small non- 

zero kurtosis even for Gaussians, the fact that it comes in only at high order (see Eq. 

(3.13)) keeps it small relative to the non-Gaussian case described below. If the initial 

distribution is non-Gaussian, from Eq. (3.8) and (3.11), 

< 62 >= a(1 + ofi); (3.14) 

<64~=~6~>+3<6~~x<6~>. (3.15) 

Moments higher than 4 are generally small in all topological defect models, so we neglect 

them in this paper. The observed kurtosis for a non-Gaussian field is: 

!&on-Gaussian = 
< 64 > 3+j3 
< 6s >2 -3=(l+a&)2 

- 3. 

We plot the observed kurtosis vs initial kurtosis in Fig. 3. Again. we assume that the 

density contrast in linear theory p !J = fi = 0.5. The difference between a Gaussian and 

non-Gaussian is obvious. Furthermore, the observed kurtosis is a sensitive funct,ion of the 

initial skewness as shown in the Fig. 3. Contrary to naive expectation. a large observed 

kurtosis (> 0.5) doesn’t mean that the initial kurtosis is large; rather. it suggests that the 

initml distribution has a negative skewness. 

Much interesting information on the initial distribution is conta,ined in the sign of 

kurtosis. For example. it would be very interesting if a, negative kurtosis is discovered. 

There are some sharp inequalities between the skewness and kurtosis. The Cauchy-Schwarz 

inequality implies tha.t 

/3202-3 (3.17) 

for any given distriblrtion. This gives an absolute lower bound for the kurtosis. If we 

expect t,he initial density distribution to be infinitely divisible, * then we have (Rohatgi & 

* .4n infinitly divisible distribution is a generalization of a Gaussian. Most of the 
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Szekely 1989): 

p 2 Q2. (3.18) 

In this case, the minimun of the kurtosis will be zero when the distribution is symmetric 

so that oi = 0. Thus, a negative kurtosis will rule out not only a Gaussian or Poisson 

distribution, but all the possible translations of the convolutionof the Gaussian and Poisson 

distribution. In this case, inflation induced random quantum flunctuations would he ruled 

out as the initial perturbations for structure formation. We are forced to find something 

more exotic like topological defects. (Of course, the amplitude of the inflation-induced 

fluctuations may be too low to cause a observable effect.) 

4. k-Space Analysis 

Newtonian equations are valid for describing the evolution of density peturbation when 

the k-mode is inside the horizon (Peebles 1980): 

34 + ;v [v’(l + S)] = 0, 

a;+ $76) + ;,-+ iv6 = 0, (4.1) 

V24 = 4i~Ga’p&, 

where a is the expansion factor of the background FRW universe. The equations can be 

solved approximately by expanding S in a power series (Juszkiewicz 1981; Vishniac 1953): 

6(k,2) = 6,(k,t) + 6*(k.i) + (4.‘) 

distributions used in cosmology today are infinitly divisible, such as a Gaussian. Poisson. 

exponential. negative-binomial, compound Poisson etc. The physical significance of the 

infinitly divisible density distribution is that each volume is stachostically independent 

(Saslaw 1989). Mathematically, it can be represented as the distribut,ion of the sum S,, = 

X1,” + +s,,, of n independent ra~nclom varia,bles with a common distribution. In the 

Levy-Khintchine representation (Feller 1966). it ca,n be approximated by translation of 

convolution of Gauss& and Poisson distribution. 
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where 

61(k, t) = Cu&/ti)2’3, 

where 

&(k,t) = ~/d3k’J(k,k’.k-k’)n*,ai_i., (4.3) 

J(k, l,m) = 2k2(~bi)(lm)-2 + 5(i. ijl-*. 

The power spectrm of the density peturbation is given by: 

P(k t) = I4k t)l* 

(4.4) 

= l&(k,t)l* +2Re[b;(k,t)&(k,t)] + (&(k,t)l* +2R@;(k,t)&(k,t)] + . ..< (4.5) 

We assume that the universe has critical density 0 = 1 so that a(t) N tZ/3, Assuming the 

initial density power spectrum is P,(k) =< CX~;CY-~ >, then 

P(k, t) = h(k)(t/ti) 4’3 + Ps(k)(t/ti)* + [P22(k) + Pls(k) + P,<(k)](t/ti)8’3 + . . (4.6) 

where 

h-(k) = 
kZ 

7 x (27r)2 J 
k’S(k, k’)dk’ J +’ dy(3 - lOy*)k’ + 7ky 

k2 - 2kk’y + k’* (4.7) 
-1 

Ph.(k) = 1 
14*(2~)~ J Ii-(k, kl> k2)d3k,d”b, J +ldy(3 - lOy*)k1 + 7ky (3 - 10y2)kz + 7ky 

-1 k2 - 2kk,y f kf k* - 2kkzy f k2’ ’ 
(4.8) 

Ps( k) and I’[<( k) are the contributions from the non-Ga,ussian nature of the initial density 

perturbation. They vanish for a Gaussian field. Pz?( k), P,3(k,) are given by Suto and 

Sasaki (1991). For the standard CDM spectrum Po( k). 

PO(k) = A(k/k,,), if k < keq; P,(k) = .-I(!c/~;,,)~, if k > k,,. (4.9) 

All of the power spectrum can be calculated analytically. However, for the skewness and 

kurtosis given by quadratic models and the O(N) (T model, the expressions appear too 

complicated to be of any immediate practical usefulness. Thus, we show here only the 

results from the fractal model: 

Ps(k) = s &PoiW:,fid, 
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where Q = &-. S, IL’ are the constants Cz,Cs in Eq(2.13) and 

(4.12) 

With these tools in hand, we can move on to study the bounds on skewness and kurtosis 

through CMBR and the power spectrum observed from redshift surveys. 

There are several ways in which the CMBR might be perturbed. The primary effect 

is the gravitation potential 4 at the last scattering surface (Sachs 9t Wolfe 1967), where 

(4.13) 

After the photon leaves the last-scattering surface, it can also be perturbed by the sec- 

ondary effects, such as going through a time-varying gravitational potential (as would 

occur in a late-time phase transition (Hill et al. 19S9)), where 

6T 2 -= 
T J 

aqM. (4.14) 
photon path 

The gravitational potential is related to the density perturbation through the Poisson 

equation: 

V2@ = 4n&pb (4.15) 

or: 

$(lc,ij = 4,(k,t) + 42ck.t) + 

= -fgq6,(Qa(l) + 62(k)a’(t)) 

where 61 and 62 are given in the previous section To first order, 

(4.16) 

47&p. 
O(k,t) = &(k>t) = -- 9A,2 ha”. (4.17) 

Since p z am3 m the matter domination regime, o is a constant. Thus. ( $&)seco,ldorg = 0. 

This is the result which is stated by Peebles (1980) as: 
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“The growing mode itself doesn’t perturb the microwave background.” 

To the second order. 

3H,2 
= --s2a(t) ‘x a(t). 

Thus, 

($& - jbdt&(Q 
which depends only on the second order term in the perturbation series of 6. Since skewness 

is the cross term of the first and second term, thus we have: 

“The skewness doesn’t perturb the CMBR.” 

The kurtosis will perturb the CMBR through a second order effect. As shown by 

Gonzalez. Sanz, & Silk (1992), the effect on rms CMBR temperature anistropy is of order 

Ii x 1K6. COBE discovered the rms temperature at the level of lo-’ which thus puts a 

loose bound on kurtosis 

I< < 10, (4.19) 

which is satisfied by all initial distributions we consider, 

The results above show that CMBR temperature fluctuations alone do not yet constrain 

the skewness and kurtosis of the initial perturbations. However, combining the COBE 

results and the density observed today a.t - 1OMpc scale can constrain skewness and 

kurtosis. 

Since we consider the case where the initial density perturbations are non-Gaus&n, 

t.he evolution of the power spectrum will be different from that of a Gaussian perturba,tion. 

Initially, let us use a basic CDM power spectrum. In that case. from Eq. (4.5), the power 
i 

spectrum observed today can be written a.~: 
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where Po( k) is the power spectrum today predicted by CDM and Zi ‘C 1000 is the redshift 

at bhe recombination epoch. The density constrast at a given scale can be found through 

the convolution of the power spectrum and an approximate window function. The redshift 

surveys gives (Davis & Peebles 1983) . 

COBE reports (Smoot et al. 1992) that the quadrople temperature anistropy coefficient is 

a2 = (6 f 2) x lo+, (4.22) 

which gives an overall normalization of the whole spectrum. Combining the two results, 

we have: 

S96n(l + Zi) 
7(2x)2 (az)2(H;‘kqj4f(q = kqr,‘) < 2 

li96r(l + Zi) 
7(2n)2 (az)4(G-‘k.qjsf2(q = k,cp-,‘) < 2 

(4.23) 

(4.24) 

which gives 

s < 0.01 (4.25) 

Ii < lo-*. (4.26) 

This result strongly suggests that if the primordial perturbation is adiabatic. it is most 

probably Gaussian. If non-Gaussianality is found, it must be generated at a la,ter time 

so that the power enha,ncement due to the gravitational evolution is small. .4 cautionary 

remark is that when density perturbation begins to go non-linear, our perturbation analysis 

may not be reliable. A detailed N-body simulation analysis will be necessary t,o check our 

conclusions here. 

5. Testing Non-Gaussianality Through CMBR 

When the primordial density perturbation is a,diabatic, it is &abed to the temperature 

anistropy in CMBR through the Sachs-Wolfe effect: 

6TjT = 613, (5.1) 
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where 4 is the gravitational potential at the last scattering surface, 

4 = Gp, J ,pirj,d3r' = %6(T) * W(T). 

The last line of the equation is written in the convolution form where W(r) = l/r. In 

k-space, we have 

(5.3) 

Thus, the two-point temperature correlation function is given by (Gouda et al. 1989): 

‘(+) = J < g,F-, > eiE’d3k = 2 J < &hmC > jo(kr)dk, (5.4) 

where r = 2Dsin0/2, 8 is the angle between two beams, and D = 2Hr’ is the distance 

from us to the last scattering surface. The three and four point temperature correlation is 

given by: 

H6 
ST(1’, i) = -0 

8 J (5.5) 

H,8 KT(;, i, i) = x 
J 

< ‘ktskz6ka6-kl-kz-ka ‘,i(k~.~i+k;.;2+k~.;3)d3k,d3k2d3k35. 

k:k;k;lk~ + kz f ks12 
(5.6) 

For Gaussian density perturbations, 

ST = 0, (5.7) 

IiT(?.i.i)= ~(C(li-;/).C(t^)+C(1:).C(JL-iJ)+C(S).C(l+-i\)). (5.8) 

Considering the present error on the observational data, it is hard to obtain reliable kurtosis 

from the 4th order temperature correlation function. However, the 3-point correlation 

function is strictly zero for Gaussian models and the non-Gaussian models are not. Thus. 

to measure the 3-point temperature correlation function through the whole-sky COBE 

data becomes very importsmt. 

In conclusion, we have shown how to test the Gaussian nature of the primordial fluctu- 

ation through the measurement of the skewness and kurtosis for the cosmological density 

field and for the microwave background temperature anistropy. We conclude that present 
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data argue that if the initial spectrum is adiabatic, then, it is probably Gaussian, but 

non-Gaussian isocurvature fluctuations are still allowed. Topological defects are in general 

isocurvature in nature so they remain as viable alternatives at the present time. 
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FIGURE CAPTIONS 

Fig. 1: The probability distribution function P(6) for the quadratic model. The solid line 

is for the Gaussian (a = 0) case. The dotted line is for OL = -0.1 (negative skewed). The 

dashed line is for 01 = 0.1 (positive skewed). The variance is the distributions ia chosen to 

be 1. 

Fig. 2: The evolved skewness S. 

Fig. 3: The evolved kurtosis K. 
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